# COMPOSITION OF FUNCTIONS AND INVERTIBLE FUNCTIONS



### DEFINITION OF COMPOSITION OF FUNCTIONS

Let  $f: A \to B$  and  $g: B \to C$  be two functions. Then the composition of f and g, denoted by gof, is defined as the function  $gof: A \to C$  given by

 $gof(x) = g(f(x)), \forall x \in A.$ 



Find gof and fog, if

(ii) f (x) =8 $x^3$  and g (x) =  $x^{\frac{1}{3}}$ 

$$f(x) = 8x^3$$
  $g(x) = x^{\frac{1}{3}}$ 

State with reason whether following functions have inverse (i) f:  $\{1, 2, 3, 4\} \rightarrow \{10\}$  with f =  $\{(1, 10), (2, 10), (3, 10), (4, 10)\}$ 

A function has inverse if it is one-one and onto

#### Check one one

 $\mathsf{f} = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ 



Since all elements have image 10,

They do not have unique image

#### ∴ f is not one-one.

Since, f is not one-one, it does not have an inverse.

(ii) g:  $\{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$  with g =  $\{(5, 4), (6, 3), (7, 4), (8, 2)\}$ 

A function has inverse if it is one-one and onto

#### Check one one

 $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ 





State with reason whether following functions have inverse

(iii) h:  $\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$  with h =  $\{(2, 7), (3, 9), (4, 11), (5, 13)\}$ 

A function has inverse if it is one-one and onto

#### Check one one

 $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$ 



Since each element has unique image,

h is one-one

#### **Check onto**



Since for every image, there is a corresponding element, ∴ h is **onto**.

Since function is both one-one and onto it will have inverse

h = {(2, 7), (3, 9), (4, 11), (5, 13)}

 $\mathbf{h}^{-1} = \{(7, 2), (9, 3), (11, 4), (13, 5)\}$ 

## **DEFINITION OF AN INVERTIBLE FUNCTION**

A function  $f: X \to Y$  is defined to be *invertible*, if there exists a function  $g: Y \to X$  such that  $gof = I_X$  and  $fog = I_Y$ . The function g is called the inverse of f and is denoted by  $f^{-1}$ .



Show that f:  $[-1, 1] \rightarrow \mathbf{R}$ , given by  $f(x) = \frac{x}{x+2}$  is one-one. Find the inverse of the function f:  $[-1, 1] \rightarrow \text{Range f.}$ 

Let y be an arbitrary element of range f.

 $y = f(x) \text{ for same } x \in [-1, 1]$   $\Rightarrow y = \frac{x}{x+2}$   $\Rightarrow xy + 2y = x$   $\Rightarrow x(1-y) = 2y$  $\Rightarrow x = \frac{2y}{1-y}, y \neq 1$ 

Now, let us define g: Range  $f \rightarrow [-1, 1]$  as

 $g(y) = \frac{2y}{1-y}, y \neq 1.$ 

Now, 
$$(gof)(x) = g(f(x)) = g\left(\frac{x}{x+2}\right) = \frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}} = \frac{2x}{x+2-x} = \frac{2x}{2} = x$$
  
 $(fog)(y) = f(g(y)) = f\left(\frac{2y}{1-y}\right) = \frac{\frac{2y}{1-y}}{\frac{2y}{1-y}+2} = \frac{2y}{2y+2-2y} = \frac{2y}{2} = y$   
 $\therefore gof = \frac{1}{[-1,1]}$  and  $fog = \frac{1}{R_{mage/f}}$   
 $\therefore f^{-1} = g$   
 $\Rightarrow f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$   
 $\therefore g(y) = \frac{2y}{1-y} \Longrightarrow g(f(x)) = \frac{2f(x)}{1-f(x)}$   
 $gof = x$   $fog = y$   $I_X$   
 $\therefore f(x) = \frac{x}{x+2} \Longrightarrow f(g(y)) = \frac{g(y)}{g(y)+2}$ 

Consider f:  $\mathbf{R}_* \rightarrow [-5, \infty)$  given by  $f(\mathbf{x}) = 9\mathbf{x}^2 + 6\mathbf{x} - 5$ . Show that f is

invertible with the inverse f<sup>-1</sup> of given f by  $f^{-1}(y) = \frac{(\sqrt{y+6}) - 1}{2}$ .

 $f: \mathbb{R}_+ \rightarrow [-5, \infty)$  is given as  $f(x) = 9x^2 + 6x - 5$ . Let *y* be an arbitrary element of  $[-5, \infty)$ . Let  $y = 9x^2 + 6x - 5$  $\Rightarrow$  y = (3x + 1)<sup>2</sup>-1-5  $=(3x+1)^2-6$  $\Rightarrow$  y + 6 =  $(3x + 1)^2$  $\Rightarrow 3x + 1 = \sqrt{y + 6} \qquad \text{range } f = [-5, \infty].$  $\Rightarrow \qquad \mathbf{x} = \frac{(\sqrt{y+6}) \cdot 1}{2} \quad [\text{as } y \ge -5 \Rightarrow y+6 > 0]$ Let us define  $g: [-5, \infty) \to R_+$  as  $g(y) = \frac{(\sqrt{y+6})-1}{2}$ Now, (gof)(x) = g(f(x)) $= q(9x^2 + 6x - 5)$  $= g((3x+1)^2 - 6)$  $=\sqrt{(3x+1)^2-6+6}-1$  $=\frac{3x+1-1}{3}=\frac{3x}{3}=x$ Thus (gof)(x) = x

and 
$$(fog)(y) = f(g(y))$$
  

$$= f\left(\frac{\sqrt{y+6}-1}{3}\right)$$

$$= \left[3\left(\frac{\sqrt{y+6}-1}{3}\right)+1\right]^2 - 6$$

$$= (\sqrt{y+6})^2 - 6$$

$$= y + 6 - 6$$

$$= y$$
Thus  $(fog)(y) = y$ 

$$\therefore gof = x = l_R \text{ and } fog = y = l_{Range f}$$
Hence,  $f$  is invertible and the inverse of  $f$  is given by
$$f^{-1}(y) = g(y) = \left(\frac{(\sqrt{y+6})-1}{3}\right)$$



## **HOME ASSIGNMENT**

