COMPOSITION OF FUNCTIONS AND INVERTIBLE FUNCTIONS

DEFINITION OF COMPOSITION OF FUNCTIONS

Let $f: A \rightarrow B$ and $\mathrm{g}: B \rightarrow C$ be two functions. Then the composition of f and g, denoted by gof, is defined as the function gof: $A \rightarrow C$ given by

$$
\operatorname{gof}(x)=g(f(x)), \forall x \in A .
$$

Ex 1.3, 3
Find $g o f$ and $f o g$, if
(ii) $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

$$
f(x)=8 x^{3} \quad g(x)=x^{\frac{1}{3}}
$$

$$
\begin{aligned}
& f(x)=8 x^{3} \\
& \begin{aligned}
f(g(x)) & =8 g(x)^{3} \\
f \circ g(x) & =8\left(x^{\frac{1}{3}}\right)^{3} \\
& =8 x^{\frac{1}{3} \times 3} \\
& =8 x
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x})=x^{\frac{1}{3}} \\
& \begin{aligned}
\mathrm{g}(\mathrm{f}(\mathrm{x})) & =f(x)^{\frac{1}{3}} \\
\boldsymbol{g o f}(\mathrm{x}) & =\left(8 x^{3}\right)^{\frac{1}{3}} \\
& =\left((2 x)^{3}\right)^{\frac{1}{3}} \\
& =(2 \mathrm{x})^{3 \times \frac{1}{3}} \\
& =\mathbf{2 x}
\end{aligned}
\end{aligned}
$$

State with reason whether following functions have inverse
(i) $\mathrm{f}:\{1,2,3,4\} \rightarrow\{10\}$ with $\mathrm{f}=\{(1,10),(2,10),(3,10),(4,10)\}$

A function has inverse if it is one-one and onto

Check one one

$f=\{(1,10),(2,10),(3,10),(4,10)\}$

Since all elements have image 10,
They do not have unique image
$\therefore \mathrm{f}$ is not one-one.
Since, f is not one-one, it does not have an inverse.
(ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g=\{(5,4),(6,3),(7,4),(8,2)\}$

A function has inverse if it is one-one and onto

Check one one

$\mathrm{g}=\{(5,4),(6,3),(7,4),(8,2)\}$

Ex 1.3, 5

State with reason whether following functions have inverse
(iii) $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$

A function has inverse if it is one-one and onto

Check one one

$h=\{(2,7),(3,9),(4,11),(5,13)\}$

Since each element has unique image, h is one-one

Check onto

Since for every image, there is a corresponding element, $\therefore \mathrm{h}$ is onto.

Since function is both one-one and onto
it will have inverse
$h=\{(2,7),(3,9),(4,11),(5,13)\}$
$\mathbf{h}^{-1}=\{(7,2),(9,3),(11,4),(13,5)\}$

DEFINITION OF AN INVERTIBLE FUNCTION

A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function g: $Y \rightarrow X$ such that $g o f=I_{X}$ and $f o g=I_{Y}$. The function g is called the inverse of f and is denoted by f^{-1}.

Ex 1.3, 6

Show that $\mathrm{f}:[-1,1] \rightarrow \mathbf{R}$, given by $\mathrm{f}(\mathrm{x})=\frac{x}{x+2}$ is one-one. Find the
inverse of the function $\mathrm{f}:[-1,1] \rightarrow$ Range f .
Let y be an arbitrary element of range f.
$y=f(x)$ for same $x \in[-1,1]$
$\Rightarrow y=\frac{x}{x+2}$
$\Rightarrow x y+2 y=x$
$\Rightarrow x(1-y)=2 y$
$\Rightarrow x=\frac{2 y}{1-y}, y \neq 1$
Now, let us define g : Range $f \rightarrow[-1,1]$ as
$g(y)=\frac{2 y}{1-y}, y \neq 1$.

Now, $(g f f)(x)=g(f(x))=g\left(\frac{x}{x+2}\right)=\frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}}=\frac{2 x}{x+2-x}=\frac{2 x}{2}=x$
$(f \circ g)(y)=f(g(y))=f\left(\frac{2 y}{1-y}\right)=\frac{\frac{2 y}{1-y}}{\frac{2 y}{1-y}+2}=\frac{2 y}{2 y+2-2 y}=\frac{2 y}{2}=y$ $\therefore g \circ \frac{I^{-1-1, \mid}}{}$ and $f \circ g=I_{\text {Rames }}$

$$
\begin{gathered}
\therefore f^{-1}=g \\
\Rightarrow \quad f^{-1}(y)=\frac{2 y}{1-y}, y \neq 1
\end{gathered}
$$

$\because g(y)=\frac{2 y}{1-y}=>g(f(x))=\frac{2 f(x)}{1-f(x)}$
$\because f(x)=\frac{x}{x+2}=>f(g(y))=\frac{g(y)}{g(y)+2}-f \circ g=y \longrightarrow X_{X}$

Ex 1.3, 9
Consider $f: R, \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(y)=\frac{(\sqrt{y+6})-1}{3}$.

$$
f: \mathrm{R}_{+} \rightarrow[-5, \infty) \text { is given as } f(x)=9 x^{2}+6 x-5
$$

Let y be an arbitrary element of $[-5, \infty)$.
Let $y=9 x^{2}+6 x-5$
$\Rightarrow y=(3 x+1)^{2}-1-5$

$$
=(3 x+1)^{2}-6
$$

$\Rightarrow y+6=(3 x+1)^{2}$
$\Rightarrow 3 x+1=\sqrt{y+6} \quad$ range $f=[-5, \infty)$.
$x=\frac{(\sqrt{y+6})-1}{3} . \quad[$ as $y \geq-5 \Longrightarrow y+6>0]$
Let us define $g:[-5, \infty) \rightarrow R_{+}$as $g(y)=\frac{(\sqrt{y+6})-1}{3}$
Now, $(g \circ f)(x)=g(f(x))$

$$
\begin{aligned}
& =g\left(9 x^{2}+6 x-5\right) \\
& =g\left((3 x+1)^{2}-6\right) \\
& =\sqrt{(3 x+1)^{2}-6+6}-1 \\
& =\frac{3 x+1-1}{3}=\frac{3 x}{3}=x
\end{aligned}
$$

Thus $(g \circ f)(x)=x$

$$
\begin{aligned}
& =f\left(\frac{\sqrt{y+6}-1}{3}\right) \\
& =\left[3\left(\frac{\sqrt{y+6}-1}{3}\right)+1\right]^{2}-6 \\
& =(\sqrt{y+6})^{2}-6 \\
& =y+6-6 \\
& =y
\end{aligned}
$$

Thus $(f o g)(y)=y$
\therefore gof $=x=I_{R}$ and $f \circ g=y=I_{\text {Range } f}$
Hence, f is invertible and the inverse of f is given by

$$
f^{-1}(y)=g(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)
$$

HOME ASSIGNMENT

$$
\begin{aligned}
& \text { EXERCISE - } 1 \\
& \text { Q. } 3 \text { NO. 7, 8, 11, } 14 \\
& \text { EXAMPLE - } 25
\end{aligned}
$$

